首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   463篇
  免费   27篇
  国内免费   1篇
  2024年   1篇
  2023年   4篇
  2022年   7篇
  2021年   20篇
  2020年   13篇
  2019年   12篇
  2018年   8篇
  2017年   7篇
  2016年   14篇
  2015年   11篇
  2014年   21篇
  2013年   34篇
  2012年   24篇
  2011年   33篇
  2010年   26篇
  2009年   20篇
  2008年   28篇
  2007年   19篇
  2006年   31篇
  2005年   25篇
  2004年   29篇
  2003年   22篇
  2002年   13篇
  2001年   4篇
  2000年   6篇
  1999年   7篇
  1998年   8篇
  1997年   4篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   3篇
  1991年   3篇
  1990年   6篇
  1989年   3篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
  1975年   1篇
  1973年   1篇
  1972年   2篇
排序方式: 共有491条查询结果,搜索用时 250 毫秒
51.
Molecular chaperones are known to play an important role in facilitating the proper folding of many newly synthesized proteins. Here, we have shown that chaperone proteins exhibit another unique property to inhibit tubulin self-assembly efficiently. Chaperones tested include alpha-crystallin from bovine eye lenses, HSP16.3, HSP70 from Mycobacterium tuberculosis and alpha (s)-casein from milk. All of them inhibit polymerization in a dose-dependent manner independent of assembly inducers used. The critical concentration of MTP polymerization increases with increasing concentration of HSP16.3. Increase in chaperone concentration lowers the extent of polymerization and increases the lag time of self-assembly reaction. Although the addition of a chaperone at the early stage of elongation phase shows no effect on polymerization, the same concentration of chaperone inhibits polymerization completely when added before the initiation of polymerization. Bindings of HSP16.3 and alpha (s)-casein to tubulin have been confirmed using isothermal titration calorimetry. Affinity constants of tubulin are 5.3 xx 10(4) and 9.8 xx 10(5) M(-1) for HSP16.3 and alpha (s)-casein, respectively. Thermodynamic parameters indicate favourable entropy and enthalpy changes for both chaperones-tubulin interactions. Positive entropy change suggests that the interaction is hydrophobic in nature and desolvation occurring during formation of tubulin-chaperone complex. On the basis of thermodynamic data and observations made upon addition of chaperone at early elongation phase or before the initiation of polymerization, we hypothesize that chaperones bind tubulin at the protein-protein interaction site involved in the nucleation phase of self-assembly.  相似文献   
52.
Down syndrome (DS) is one of the commonest disorders with huge medical and social cost. DS is associated with number of phenotypes including congenital heart defects, leukemia, Alzeihmer’s disease, Hirschsprung disease etc. DS individuals are affected by these phenotypes to a variable extent thus understanding the cause of this variation is a key challenge. In the present review article, we emphasize an overview of DS, DS-associated phenotypes diagnosis and management of the disease. The genes or miRNA involved in Down syndrome associated Alzheimer’s disease, congenital heart defects (AVSD), leukemia including AMKL and ALL, hypertension and Hirschprung disease are discussed in this article. Moreover, we have also reviewed various prenatal diagnostic method from karyotyping to rapid molecular methods -  MLPA, FISH, QF-PCR, PSQ, NGS and noninvasive prenatal diagnosis in detail.  相似文献   
53.
The present work explores the possibility of formulating an oral insulin delivery system using nanoparticulate complexes made from the interaction between biodegradable, natural polymer called chitosan and anionic surfactant called sodium lauryl sulfate (SLS). The interaction between chitosan and SLS was confirmed by Fourier transform infrared spectroscopy. The nanoparticles were prepared by simple gelation method under aqueous-based conditions. The nanoparticles were stable in simulated gastric fluids and could protect the encapsulated insulin from the GIT enzymes. Additionally, the in vivo results clearly indicated that the insulin-loaded nanoparticles could effectively reduce the blood glucose level in a diabetic rat model. However, additional formulation modifications are required to improve insulin oral bioavailability.KEY WORDS: chitosan, insulin, nanoparticles, oral delivery system, sodium lauryl sulfate  相似文献   
54.
Arthrobacter nicotinovorans HIM was isolated directly from an agricultural sandy dune soil 6 months after a single application of atrazine. It grew in minimal medium with atrazine as sole nitrogen source but was unable to mineralize 14C-ring-labelled atrazine. Atrazine was degraded to cyanuric acid. In addition to atrazine the bacterium degraded simazine, terbuthylazine, propazine, cyanazine and prometryn but was unable to grow on terbumeton. When added to soil, A. nicotinovorans HIM did enhance mineralization of 14C-ring-labelled atrazine and simazine, in combination with naturally occurring cyanuric acid degrading microbes resident in the soil. Using PCR, the atrazine-degradation genes atzABC were identified in A. nicotinovorans HIM. Cloning of the atzABC genes revealed significant homology (>99%) with the atrazine degradation genes of Pseudomonas sp. strain ADP. The atrazine degradation genes were held on a 96 kbp plasmid.  相似文献   
55.
56.
Postprandial activation of hemostatic factors: role of dietary fatty acids   总被引:3,自引:0,他引:3  
Intake of dietary fat is an important determinant of the plasma concentration of triacylglycerol-rich lipoproteins, and the degree of alimentary lipemia is reported to have effects on hemostatic status including platelet function. Although association between the amount of dietary fat intake, lipemic response and certain cardiovascular disease (CVD) risk factors (VIIa and PAI-1) has been reported, the significance of the fatty acid composition of ingested fat for the postprandial lipid concentrations and the hemostatic factors is still unclear. Accumulating evidence suggests a relationship between dietary fatty acids and emerging hemostatic CVD risk factors, although much of this evidence is incomplete or conflicting. In order to improve our knowledge in this area, sufficient sample size in future studies are required to take into account of the genetic variation (gene polymorphisms for VII, PAI-1), sex, physical activity, stage of life factors, and sufficient duration to account for adaptation for definitive conclusions.  相似文献   
57.
Methionine can be used as the sole sulfur source by the Mycobacterium tuberculosis complex although it is not obvious from examination of the genome annotation how these bacteria utilize methionine. Given that genome annotation is a largely predictive process, key challenges are to validate these predictions and to fill in gaps for known functions for which genes have not been annotated. We have addressed these issues by functional analysis of methionine metabolism. Transport, followed by metabolism of (35)S methionine into the cysteine adduct mycothiol, demonstrated the conversion of exogenous methionine to cysteine. Mutational analysis and cloning of the Rv1079 gene showed it to encode the key enzyme required for this conversion, cystathionine gamma-lyase (CGL). Rv1079, annotated metB, was predicted to encode cystathionine gamma-synthase (CGS), but demonstration of a gamma-elimination reaction with cystathionine as well as the gamma-replacement reaction yielding cystathionine showed it encodes a bifunctional CGL/CGS enzyme. Consistent with this, a Rv1079 mutant could not incorporate sulfur from methionine into cysteine, while a cysA mutant lacking sulfate transport and a methionine auxotroph was hypersensitive to the CGL inhibitor propargylglycine. Thus, reverse transsulfuration alone, without any sulfur recycling reactions, allows M. tuberculosis to use methionine as the sole sulfur source. Intracellular cysteine was undetectable so only the CGL reaction occurs in intact mycobacteria. Cysteine desulfhydrase, an activity we showed to be separable from CGL/CGS, may have a role in removing excess cysteine and could explain the ability of M. tuberculosis to recycle sulfur from cysteine, but not methionine.  相似文献   
58.
Bayen R  Islam M  Saha B  Das AK 《Carbohydrate research》2005,340(13):2163-2170
The kinetics of Cr(VI) oxidation of D-glucose to the corresponding lactone in the presence and absence of 2,2'-bipyridine (bipy) has been carried out under the conditions, [D-glucose](T) > [Cr(VI)](T) at different temperatures in aqueous micellar media. The monomeric Cr(VI) species has been found to be kinetically active in the absence of bipy whereas in the bipy-catalysed path, the Cr(VI)-bipy complex has been found to be the active oxidant. In the bipy-catalysed path, the Cr(VI)-bipy complex undergoes nucleophilic attack by the substrate to form a ternary complex. The ternary complex spontaneously experiences a redox decomposition (through two-electron transfer) in the rate-determining step leading to the product lactone and Cr(IV)-bipy complex. The Cr(IV)-bipy complex then takes part in faster steps in the further oxidation of D-glucose and is ultimately converted into a Cr(III)-bipy complex. In the uncatalysed path, the Cr(VI)-substrate ester experiences acid catalysed redox decomposition (two-electron transfer) in the rate-determining step. The uncatalysed path shows a second order dependence on [H(+)] and a first order dependence on each of the reactants [D-glucose](T) and [Cr(VI)](T). In contrast, the bipy-catalysed path shows a first order dependence on each of the reactants [H(+)], [D-glucose](T) and [Cr(VI)](T). The bipy-catalysed path is first order in [bipy](T). These observations remain unaltered in the presence of externally added surfactants. The effect of the cationic surfactant, N-cetylpyridinium chloride (CPC) and anionic surfactant, sodium dodecyl sulfate (SDS) on both the uncatalysed and bipy-catalysed path has been studied. CPC inhibits both the uncatalysed and bipy-catalysed path, while SDS catalyses these reactions. The observed micellar effects have been explained by considering hydrophobic and electrostatic interactions between the surfactants and reactants.  相似文献   
59.
Theaflavin derivatives and catechin derivatives are the major polyphenols in black tea and green tea, respectively. Several tea polyphenols, especially those with galloyl moiety, can inhibit HIV-1 replication with multiple mechanisms of action. Here we showed that the theaflavin derivatives had more potent anti-HIV-1 activity than catechin derivatives. These tea polyphenols could inhibit HIV-1 entry into target cells by blocking HIV-1 envelope glycoprotein-mediated membrane fusion. The fusion inhibitory activity of the tea polyphenols was correlated with their ability to block the formation of the gp41 six-helix bundle, a fusion-active core conformation. Computer-aided molecular docking analyses indicate that these tea polyphenols, theaflavin-3,3'-digallate (TF3) as an example, may bind to the highly conserved hydrophobic pocket on the surface of the central trimeric coiled coil formed by the N-terminal heptad repeats of gp41. These results indicate that tea, especially black tea, may be used as a source of anti-HIV agents and theaflavin derivatives may be applied as lead compounds for developing HIV-1 entry inhibitors targeting gp41.  相似文献   
60.
Isotypes of vertebrate tubulin have variable amino acid sequences, which are clustered at their C-terminal ends. Isotypes bind colchicine at different on-rates and affinity constants. The kinetics of colchicine binding to purified (unfractionated) brain tubulin have been reported to be biphasic under pseudo-first-order conditions. Experiments with individual isotypes established that the presence of beta(III) in the purified tubulin is responsible for the biphasic kinetics. Because the isotypes mainly differ at the C termini, the colchicine-binding kinetics of unfractionated tubulin and the beta(III) isotype, cleaved at the C termini, have been tested under pseudo-first-order conditions. Removal of the C termini made no difference to the nature of the kinetics. Sequence alignment of different beta isotypes of tubulin showed that besides the C-terminal region, there are differences in the main body as well. To establish whether these differences lie at the colchicine-binding site or not, homology modeling of all beta-tubulin isotypes was done. We found that the isotypes differed from each other in the amino acids located near the A ring of colchicine at the colchicine-binding site on beta tubulin. While the beta(III) isotype has two hydrophilic residues (serine(242) and threonine(317)), both beta(II) and beta(IV) have two hydrophobic residues (leucine(242) and alanine(317)). beta(II) has isoleucine at position 318, while beta(III) and beta(IV) have valine at that position. Thus, these alterations in the nature of the amino acids surrounding the colchicine site could be responsible for the different colchicine-binding kinetics of the different isotypes of tubulin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号